Читаем ЭКГ сердца — зубцы, сегменты, интервалы

Изоэлектрическая точка — Isoelectric point

Изоэлектрической точкой ( ИЭТ , рН (I) , МЭП ), является рН , при котором конкретная молекула не несет никакой чистый электрический заряд или электрически нейтрален в статистическом среднем . Стандартная номенклатура для представления изоэлектрической точки — pH (I), хотя pI также часто встречается и используется в этой статье для краткости. Чистый заряд молекулы зависит от pH окружающей среды и может стать более положительным или отрицательным из-за увеличения или потери протонов (H + ) соответственно.

Поверхности естественным образом заряжаются, образуя двойной слой . В общем случае, когда ионы, определяющие поверхностный заряд, представляют собой H + / OH — , чистый поверхностный заряд зависит от pH жидкости, в которую погружено твердое тело.

Значение pI может влиять на растворимость молекулы при заданном pH. Такие молекулы обладают минимальной растворимостью в воде или солевых растворах при pH, соответствующем их pI, и часто выпадают в осадок из раствора . Биологические амфотерные молекулы, такие как белки, содержат как кислотные, так и основные функциональные группы . Аминокислоты, из которых состоят белки, могут быть положительными, отрицательными, нейтральными или полярными по своей природе и вместе придают белку его общий заряд. При pH ниже их pI белки несут чистый положительный заряд; выше их pI они несут чистый отрицательный заряд. Таким образом, белки могут быть разделены по суммарному заряду в полиакриламидном геле с использованием либо препаративного гель-электрофореза , при котором используется постоянный pH для разделения белков, либо изоэлектрического фокусирования , при котором для разделения белков используется градиент pH. Изоэлектрическая фокусировка также является первым шагом в электрофорезе в 2-мерном геле полиакриламидном геле .

В биомолекулах белки можно разделить с помощью ионообменной хроматографии . Биологические белки состоят из цвиттерионных аминокислотных соединений; чистый заряд этих белков может быть положительным или отрицательным в зависимости от pH окружающей среды. Конкретную pI целевого белка можно использовать для моделирования процесса, а затем соединение можно очистить от остальной смеси. Для этого процесса очистки можно использовать буферы с различным pH, чтобы изменить pH окружающей среды. Когда смесь, содержащая целевой белок, загружается в ионообменник, неподвижная матрица может быть либо положительно заряженной (для подвижных анионов), либо отрицательно заряженной (для подвижных катионов). При низких значениях pH чистый заряд большинства белков в смеси положительный — в катионообменниках эти положительно заряженные белки связываются с отрицательно заряженной матрицей. При высоких значениях pH чистый заряд большинства белков отрицательный, так как они связываются с положительно заряженной матрицей в анионообменниках. Когда среда имеет значение pH, равное pI белка, чистый заряд равен нулю, и белок не связан с каким-либо обменником и, следовательно, может быть элюирован.

Содержание

  • 1 Расчет значений pI
    • 1.1 Примеры
  • 2 Изоэлектрическая точка пептидов и белков
  • 3 Керамические материалы
  • 4 Изоэлектрическая точка в сравнении с точкой нулевого заряда
  • 5 Смотрите также
  • 6 Ссылки
  • 7 дальнейшее чтение
  • 8 внешние ссылки

Расчет значений pI

Для аминокислоты, содержащей только один амин и одну карбоксильную группу, pI можно рассчитать на основе среднего значения pKas этой молекулы.

п я знак равно п K а 1 + п K а 2 2 < displaystyle mathrm = < frac < mathrm

K _ < mathrm > + mathrm

K _ < mathrm >> <2>>>

РН от электрофоретического геля определяется буфером , используемым для этого геля. Если pH буфера выше pI запускаемого белка, белок будет мигрировать к положительному полюсу (отрицательный заряд притягивается к положительному полюсу). Если pH буфера ниже pI запускаемого белка , белок будет мигрировать к отрицательному полюсу геля (положительный заряд притягивается к отрицательному полюсу). Если белок запускается с буферным pH, равным pI, он вообще не будет мигрировать. Это верно и для отдельных аминокислот.

Примеры

глицин pK = 2,72, 9,60 аденозинмонофосфат pK = 0,9, 3,8, 6,1

В двух примерах (справа) изоэлектрическая точка показана зеленой вертикальной линией. В глицине значение рК отделено друг от друга почти на 7 единиц , так что концентрация нейтральных частиц, глицин (GlyH), фактически 100% от аналитической концентрации глицина. Глицин может существовать в виде цвиттериона в изоэлектрической точке, но константа равновесия для реакции изомеризации в растворе

Другой пример, аденозинмонофосфат, показан для иллюстрации того факта, что в принципе может быть задействован третий вид. Фактически, в этом случае концентрацией (AMP) H 3 2+ можно пренебречь в изоэлектрической точке. Если pI больше pH, молекула будет иметь положительный заряд.

Изоэлектрическая точка пептидов и белков

Разработан ряд алгоритмов оценки изоэлектрических точек пептидов и белков . Большинство из них используют уравнение Хендерсона – Хассельбаха с разными значениями pK. Например, в рамках модели, предложенной Бьеллквистом и соавторами, pK определяли между близкородственными иммобилинами, фокусируя один и тот же образец в перекрывающихся градиентах pH. Также были предложены некоторые улучшения в методологии (особенно в определении значений pK для модифицированных аминокислот). Более продвинутые методы учитывают влияние соседних аминокислот на ± 3 остатка от заряженной аспарагиновой или глутаминовой кислоты , влияние на свободный С-конец, а также применяют поправочный член к соответствующим значениям pK с использованием генетического алгоритма . Другие недавние подходы основаны на алгоритме машины опорных векторов и оптимизации pKa относительно экспериментально известных изоэлектрических точек белка / пептида.

Более того, экспериментально измеренные изоэлектрические точки белков были объединены в базы данных. Недавно была также разработана база данных изоэлектрических точек для всех белков, предсказанных с использованием большинства доступных методов.

Керамические материалы

Изоэлектрические точки (ИЭТ) металлооксидной керамики широко используются в материаловедении на различных стадиях обработки воды (синтез, модификация и т. Д.). В отсутствие хемосорбированных или физадсорбированных частиц поверхности частиц в водной суспензии обычно предполагается покрытыми поверхностными гидроксильными частицами, M-OH (где M представляет собой металл, такой как Al, Si и т. Д.). При значениях pH выше IEP преобладающими поверхностными видами являются MO — , тогда как при значениях pH ниже IEP преобладают виды M-OH 2 + . Некоторые приблизительные значения обычной керамики перечислены ниже:

Термины изоэлектрическая точка (IEP) и точка нулевого заряда (PZC) часто используются взаимозаменяемо, хотя при определенных обстоятельствах может быть полезно провести различие.

В системах, в которых H + / OH — являются ионами, определяющими межфазный потенциал, точка нулевого заряда дается в единицах pH. PH, при котором поверхность демонстрирует нейтральный чистый электрический заряд, является точкой нулевого заряда на поверхности. Электрокинетические явления обычно измеряют дзета-потенциал , и нулевой дзета-потенциал интерпретируется как точка нулевого суммарного заряда в плоскости сдвига . Это называется изоэлектрической точкой. Таким образом, изоэлектрическая точка — это значение pH, при котором коллоидная частица остается неподвижной в электрическом поле. Ожидается, что изоэлектрическая точка будет несколько отличаться от точки нулевого заряда на поверхности частицы, но на практике это различие часто игнорируется для так называемых первичных поверхностей, то есть поверхностей без специально адсорбированных положительных или отрицательных зарядов. В этом контексте под специфической адсорбцией понимается адсорбция, происходящая в слое Штерна, или хемосорбция . Таким образом, точка нулевого заряда на поверхности принимается равной изоэлектрической точке при отсутствии специфической адсорбции на этой поверхности.

Читайте также:  Магнитно резонансная томография (МРТ) головного мозга в Санкт-Петербурге, сделать по невысокой цене

Согласно Жоливе, при отсутствии положительных или отрицательных зарядов поверхность лучше всего описывается точкой нулевого заряда. Если положительный и отрицательный заряды присутствуют в равных количествах, то это изоэлектрическая точка. Таким образом, PZC относится к отсутствию любого типа поверхностного заряда, в то время как IEP относится к состоянию нейтрального чистого поверхностного заряда. Таким образом, разница между ними заключается в количестве заряженных сайтов в точке с нулевым зарядом. Жоливе использует внутренние константы равновесия поверхности, p K — и p K +, чтобы определить два условия в терминах относительного количества заряженных сайтов:

п K — — п K + знак равно Δ п K знак равно журнал ⁡ [ M О ЧАС ] 2 [ M О ЧАС 2 + ] [ M О — ] < Displaystyle mathrm

K ^ <->— mathrm

K ^ <+>= Delta mathrm

K = log < frac < left [ mathrm right ] ^ <2>> < left [ mathrm <_ <2>^ <+>> right] left [ mathrm ^ <-> right]>>>

Для больших Δp K (> 4 по Жоливе) преобладающим веществом является MOH, в то время как заряженных частиц относительно мало, поэтому PZC имеет значение. При малых значениях Δp K имеется много заряженных частиц примерно в равном количестве, поэтому говорят об ИЭП.

Смотрите также

  • Уравнение Хендерсона-Хассельбаха
  • Изоэлектрическая фокусировка
  • Изоионная точка
  • константа диссоциации кислоты pK
  • QPNC-PAGE

Ссылки

дальнейшее чтение

  • Нельсон Д.Л., Кокс М.М. (2004). Принципы биохимии Ленингера . WH Freeman; 4-е издание (в твердом переплете). ISBN0-7167-4339-6
  • Космульский М. (2009). Поверхностная зарядка и точки нулевого заряда . CRC Press; 1-е издание (твердый переплет). ISBN978-1-4200-5188-9

внешние ссылки

  • IPC — Калькулятор изоэлектрической точки — рассчитайте изоэлектрическую точку белка с помощью более 15 методов
  • prot pi — изоэлектрическая точка белка — онлайн-программа для расчета pI белков (включая множественные субъединицы и посттрансляционные модификации)
  • CurTiPot — набор электронных таблиц для расчета кислотно-основного равновесия (график зависимости заряда от pH амфотерных молекул, например, аминокислот)
  • SWISS-2DPAGE — база данных изоэлектрических точек, полученных в результате двумерного электрофореза в полиакриламидном геле (

2000 белков)
PIP-DB — база данных изоэлектрических точек белка (

5000 белков)

  • Proteome-pI — база данных изоэлектрических точек протеома (предсказанная изоэлектрическая точка для всех белков)
  • Зубцы, сегменты и интервалы нормальной ЭКГ и схема их формирования

    На рисунке 7 представлены два полных кардиоцикла. Для того чтобы перейти к рассмотрению основных зубцов и сегментов ЭКГ нужно разобраться с понятием изоэлектрической линии или линией нулевого потенциала. Изоэлектрической называется линия, регистрирующаяся либо при отсутствии разницы потенциалов между двумя исследуемыми точками, либо при одинаковом заряде в этих двух точках. В обоих случаях на ленте будет фиксироваться прямая, которую мы условно можем обозначить за ось X, по которой будут отмечаться временные интервалы (t, сек). По второй оси Y будет отмечаться вольтаж ЭКГ (ДЦ, мВ). Таким образом, ЭКГ — изменение разницы потенциалов сердца во времени.

    Сердечный цикл (кардиоцикл) состоит из двух фаз — систолы и диастолы. Систола — фаза сердечного цикла, состоящая из последовательно протекающих сокращений миокарда предсердий и желудочков. Диастола — фаза сердечного цикла: расширение полостей сердца, связанное с расслаблением мускулатуры их стенок, во время которого полости сердца наполняются кровью. И систола, и диастола, имеют две составляющие — электрическую и механическую. Электрическая составляющая отражает процессы протекающие в проводящей системе сердца, а механическая — процессы, протекающие в сократительной системе.Отдельно следует отметить, что механический кардиоцикл, запаздывает от электрического, так как кардиомиоцитам, получившим электрический импульс от проводящей системы, нужно время для того чтобы сократиться. ЭКГ отражает только электрический кардиоцикл.

    1) Зубец P — отражает процесс деполяризации обоих предсердий. Как было сказано ранее, предсердия возбуждаются практически одновременно, в результате чего на ЭКГ формируется лишь один зубец (в зависимости от отведения может быть как положительным, находится выше изоэлектрической линии, так и отрицательным – ниже изоэлектрической линии).

    2) Сегмент P-Q(R) —время от конца деполяризации предсердий, до начала деполяризации желудочков. Кто был внимателен, отметит, что это есть не что иное, как физиологическая задержка импульса в АВ-узле. Как правило, данный сегмент лежит на изоэлектрической линии. (В скобках пишется зубец R,так как нередко, даже в состоянии нормы, зубец Q у многих людей может отсутствовать, в таком случае считается сегмент P-R —от конца зубца P до начала зубца R).

    3) Интервал P-Q(R) —время от начала деполяризации предсердий, до начала деполяризации желудочков (характеризует скорость предсердной проводимости импульса).

    4) Комплекс QRS —время от начала зубца Q до конца зубца S, характеризует время деполяризации желудочков. Зубец Q — характеризует возбуждение верхней трети межжелудочковой перегородки. Зубцы R и S характеризуют возбуждение верхушки сердца (Зубцы Q и S — всегда отрицательные, зубец R — всегда положительный).

    5) Сегмент ST —характеризует время полного охвата желудочков возбуждением после возбуждения верхушки сердца. Как правило, лежит на изолинии.

    6) Интервал Q-T –электрическая систола сердца. Зубец T характеризует реполяризацию желудочков (в зависимости от отведения может быть как положительным, так и отрицательным). Реполяризация предсердий на ЭКГ не находит своего отражения, так как по времени совпадает с деполяризацией желудочков, но поскольку несет в себе более низкую разность потенциалов, на ЭКГ мы видим именно деполяризацию желудочков.

    7) Комплекс T-P.Как правило, лежит на изолинии и отражает электрическую диастолу сердца.

    Физиологическое значение зубца U не определено, и в большинстве случаев, он не встречается.

    Интервал R-R –характеризует время одного полного кардиоцикла, или время одного сердечного сокращения (следует отметить, что на ЭКГ у здорового человека интервалы P-P, Q-Q, R-R, S-S, T-T все будут равны между собой, но поскольку, зубец R, как правило, самый высокоамплитудный и легко различимый, для определения частоты пульса, либо времени кардиоцикла используют именно интервал R-R).

    Читайте также:  Экомед цена, Экомед купить в Москве дешево, инструкция по применению, аналоги, отзывы

    Также необходимо уметь рассчитывать амплитуды зубцов. Амплитудой зубца называется перпендикуляр, опущенный из вершины зубца на изоэлектрическую линию, для примера на рисунке показаны амплитуды зубцов R, S и Q — h1, h2, h3 соответственно. Запись ЭКГ, как правило, производится на миллиметровую бумагу, поэтому пересчитать амплитуду в единицах длины – не составит особого труда. Но для перевода длины в вольты, необходимо знать усиление кардиографа, для чего перед каждым записанным отведением должен подаваться калибровочный сигнал, о котором говорилось выше.

    Расшифровка ЭКГ

    План расшифровки ЭКГ

    Электрокардиограмма отражает только электрические процессы в миокарде: деполяризацию (возбуждение) и реполяризацию (восстановление) клеток миокарда.


    Соотношение интервалов ЭКГ с фазами сердечного цикла (систола и диастола желудочков).

    В норме деполяризация приводит к сокращению мышечной клетки, а реполяризация — к расслаблению.

    Для упрощения дальше я буду вместо “деполяризации-реполяризации” иногда использовать “сокращение-расслабление”, хотя это не совсем точно: существует понятие “электромеханическая диссоциация“, при которой деполяризация и реполяризация миокарда не приводят к его видимому сокращению и расслаблению.

    Элементы нормальной ЭКГ

    Прежде, чем перейти к расшифровке ЭКГ, нужно разобраться, из каких элементов она состоит.


    Зубцы и интервалы на ЭКГ.
    Любопытно, что за рубежом интервал P-Q обычно называют P-R.

    Любая ЭКГ состоит из зубцов, сегментов и интервалов.

    ЗУБЦЫ — это выпуклости и вогнутости на электрокардиограмме. На ЭКГ выделяют следующие зубцы:

    • P (сокращение предсердий),
    • Q, R, S (все 3 зубца характеризуют сокращение желудочков),
    • T (расслабление желудочков),
    • U (непостоянный зубец, регистрируется редко).

    СЕГМЕНТЫ
    Сегментом на ЭКГ называют отрезок прямой линии (изолинии) между двумя соседними зубцами. Наибольшее значение имеют сегменты P-Q и S-T. Например, сегмент P-Q образуется по причине задержки проведения возбуждения в предсердно-желудочковом (AV-) узле.

    ИНТЕРВАЛЫ
    Интервал состоит из зубца (комплекса зубцов) и сегмента. Таким образом, интервал = зубец + сегмент. Самыми важными являются интервалы P-Q и Q-T.


    Зубцы, сегменты и интервалы на ЭКГ.
    Обратите внимание на большие и мелкие клеточки (о них ниже).

    Зубцы комплекса QRS

    Поскольку миокард желудочков массивнее миокарда предсердий и имеет не только стенки, но и массивную межжелудочковую перегородку, то распространение возбуждения в нем характеризуется появлением сложного комплекса QRS на ЭКГ.

    Как правильно выделить в нем зубцы?

    Прежде всего оценивают амплитуду (размеры) отдельных зубцов комплекса QRS. Если амплитуда превышает 5 мм, зубец обозначают заглавной (большой) буквой Q, R или S; если же амплитуда меньше 5 мм, то строчной (маленькой): q, r или s.

    Зубцом R (r) называют любой положительный (направленный вверх) зубец, который входит в комплекс QRS. Если зубцов несколько, последующие зубцы обозначают штрихами: R, R’, R” и т. д.

    Отрицательный (направленный вниз) зубец комплекса QRS, находящийся перед зубцом R, обозначается как Q (q), а после — как S (s). Если же в комплексе QRS совсем нет положительных зубцов, то желудочковый комплекс обозначают как QS.


    Варианты комплекса QRS.

    зубец Q отражает деполяризацию межжелудочковой перегородки (возбуждается межжелудочковая перегородка)

    зубец R — деполяризацию основной массы миокарда желудочков (возбуждается верхушка сердца и прилегающие к ней области)

    зубец S — деполяризацию базальных (т.е. возле предсердий) отделов межжелудочковой перегородки (возбуждается основание сердца)

    Зубец RV1, V2 отражает возбуждение межжелудочковой перегородки,

    а RV4, V5, V6 — возбуждение мышцы левого и правого желудочков.

    Омертвение участков миокарда (например, при инфаркте миокарда) вызывает расширение и углубление зубца Q, поэтому на этот зубец всегда обращают пристальное внимание.

    Анализ ЭКГ

    Общая схема расшифровки ЭКГ

    1. Проверка правильности регистрации ЭКГ.
    2. Анализ сердечного ритма и проводимости:
      • оценка регулярности сердечных сокращений,
      • подсчет частоты сердечных сокращений (ЧСС),
      • определение источника возбуждения,
      • оценка проводимости.
    3. Определение электрической оси сердца.
    4. Анализ предсердного зубца P и интервала P — Q.
    5. Анализ желудочкового комплекса QRST:
      • анализ комплекса QRS,
      • анализ сегмента RS — T,
      • анализ зубца T,
      • анализ интервала Q — T.
    6. Электрокардиографическое заключение.


    Нормальная электрокардиограмма.

    1) Проверка правильности регистрации ЭКГ

    В начале каждой ЭКГ-ленты должен иметься калибровочный сигнал — так называемый контрольный милливольт. Для этого в начале записи подается стандартное напряжение в 1 милливольт, которое должно отобразить на ленте отклонение в 10 мм. Без калибровочного сигнала запись ЭКГ считается неправильной.

    В норме, по крайней мере в одном из стандартных или усиленных отведений от конечностей, амплитуда должна превышать 5 мм, а в грудных отведениях — 8 мм. Если амплитуда ниже, это называется сниженный вольтаж ЭКГ, который бывает при некоторых патологических состояниях.

    2) Анализ сердечного ритма и проводимости:

    оценка регулярности сердечных сокращений

    Регулярность ритма оценивается по интервалам R-R. Если зубцы находятся на равном расстоянии друг от друга, ритм называется регулярным, или правильным. Допускается разброс длительности отдельных интервалов R-R не более ± 10% от средней их длительности. Если ритм синусовый, он обычно является правильным.

    подсчет частоты сердечных сокращений (ЧСС)

    На ЭКГ-пленке напечатаны большие квадраты, каждый из которых включает в себя 25 маленьких квадратиков (5 по вертикали x 5 по горизонтали).

    Для быстрого подсчета ЧСС при правильном ритме считают число больших квадратов между двумя соседними зубцами R — R.

    При скорости ленты 50 мм/с: ЧСС = 600 / (число больших квадратов).
    При скорости ленты 25 мм/с: ЧСС = 300 / (число больших квадратов).

    На скорости 25 мм/с каждая маленькая клеточка равна 0.04 c,

    а на скорости 50 мм/с — 0.02 с.

    Это используется для определения длительности зубцов и интервалов.

    При неправильном ритме обычно считают максимальную и минимальную ЧСС согласно длительности самого маленького и самого большого интервала R-R соответственно.

    определение источника возбуждения

    Другими словами, ищут, где находится водитель ритма, который вызывает сокращения предсердий и желудочков.

    Иногда это один из самых сложных этапов, потому что различные нарушения возбудимости и проводимости могут очень запутанно сочетаться, что способно привести к неправильному диагнозу и неправильному лечению.

    Чтобы правильно определять источник возбуждения на ЭКГ, нужно хорошо знать проводящую систему сердца.

    СИНУСОВЫЙ ритм (это нормальный ритм, а все остальные ритмы являются патологическими).
    Источник возбуждения находится в синусно-предсердном узле.

    Признаки на ЭКГ:

    • во II стандартном отведении зубцы P всегда положительные и находятся перед каждым комплексом QRS,
    • зубцы P в одном и том же отведении имеют постоянную одинаковую форму.


    Зубец P при синусовом ритме.

    ПРЕДСЕРДНЫЙ ритм. Если источник возбуждения находится в нижних отделах предсердий, то волна возбуждения распространяется на предсердия снизу вверх (ретроградно), поэтому:

    • во II и III отведениях зубцы P отрицательные,
    • зубцы P есть перед каждым комплексом QRS.
    Читайте также:  Йод в твердом состоянии 2


    Зубец P при предсердном ритме.

    Ритмы из АВ-соединения. Если водитель ритма находится в атрио-вентрикулярном (предсердно-желудочковом узле) узле, то желудочки возбуждаются как обычно (сверху вниз), а предсердия — ретроградно (т.е. снизу вверх).

    При этом на ЭКГ:

    • зубцы P могут отсутствовать, потому что наслаиваются на нормальные комплексы QRS,
    • зубцы P могут быть отрицательными, располагаясь после комплекса QRS.


    Ритм из AV-соединения, наложение зубца P на комплекс QRS.


    Ритм из AV-соединения, зубец P находится после комплекса QRS.

    ЧСС при ритме из АВ-соединения меньше синусового ритма и равна примерно 40-60 ударов в минуту.

    Желудочковый, или ИДИОВЕНТРИКУЛЯРНЫЙ, ритм

    В этом случае источником ритма является проводящая система желудочков.

    Возбуждение распространяется по желудочкам неправильными путями и потому медленее. Особенности идиовентрикулярного ритма:

    • комплексы QRS расширены и деформированы (выглядят “страшновато”). В норме длительность комплекса QRS равна 0.06-0.10 с, поэтому при таком ритме QRS превышает 0.12 c.
    • нет никакой закономерности между комплексами QRS и зубцами P, потому что АВ-соединение не выпускает импульсы из желудочков, а предсердия могут возбуждаться из синусового узла, как и в норме.
    • ЧСС менее 40 ударов в минуту.


    Идиовентрикулярный ритм. Зубец P не связан с комплексом QRS.

    Для правильного учета проводимости учитывают скорость записи.

    Для оценки проводимости измеряют:

    • длительность зубца P (отражает скорость проведения импульса по предсердиям), в норме до 0.1 c.
    • длительность интервала P — Q (отражает скорость проведения импульса от предсердий до миокарда желудочков); интервал P — Q = (зубец P) + (сегмент P — Q). В норме 0.12-0.2 с.
    • длительность комплекса QRS (отражает распространение возбуждения по желудочкам). В норме 0.06-0.1 с.
    • интервал внутреннего отклонения в отведениях V1 и V6. Это время между началом комплекса QRS и зубцом R. В норме в V1 до 0.03 с и в V6 до 0.05 с. Используется в основном для распознавания блокад ножек пучка Гиса и для определения источника возбуждения в желудочках в случае желудочковой экстрасистолы (внеочередного сокращения сердца).


    Измерение интервала внутреннего отклонения.

    3) Определение электрической оси сердца.

    4) Анализ предсердного зубца P.

    • В норме в отведениях I, II, aVF, V2 — V6 зубец P всегда положительный.
    • В отведениях III, aVL, V1 зубец P может быть положительным или двухфазным (часть зубца положительная, часть — отрицательная).
    • В отведении aVR зубец P всегда отрицательный.
    • В норме длительность зубца P не превышает 0.1 c, а его амплитуда — 1.5 — 2.5 мм.

    Патологические отклонения зубца P:

    • Заостренные высокие зубцы P нормальной продолжительности в отведениях II, III, aVF характерны для гипертрофии правого предсердия, например, при “легочном сердце”.
    • Расщепленный с 2 вершинами, расширенный зубец P в отведениях I, aVL, V5, V6 характерен для гипертрофии левого предсердия, например, при пороках митрального клапана.


    Формирование зубца P (P-pulmonale) при гипертрофии правого предсердия.


    Формирование зубца P (P-mitrale) при гипертрофии левого предсердия.

    4) Анализ интервала P-Q:

    в норме 0.12-0.20 с.

    Увеличение данного интервала бывает при нарушенном проведении импульсов через предсердно-желудочковый узел (атриовентрикулярная блокада, AV-блокада).

    AV-блокада бывает 3 степеней:

    • I степень — интервал P-Q увеличен, но каждому зубцу P соответствует свой комплекс QRS (выпадения комплексов нет).
    • II степень — комплексы QRS частично выпадают, т.е. не всем зубцам P соответствует свой комплекс QRS.
    • III степень — полная блокада проведения в AV-узле. Предсердия и желудочки сокращаются в собственном ритме, независимо друг от друга. Т.е. возникает идиовентрикулярный ритм.

    5) Анализ желудочкового комплекса QRST:

    анализ комплекса QRS.

    • Максимальная длительность желудочкового комплекса равна 0.07-0.09 с (до 0.10 с).
    • Длительность увеличивается при любых блокадах ножек пучка Гиса.
    • В норме зубец Q может регистрироваться во всех стандартных и усиленных отведениях от конечностей, а также в V4-V6.
    • Амплитуда зубца Q в норме не превышает 1/4 высоты зубца R, а длительность — 0.03 с.
    • В отведении aVR в норме бывает глубокий и широкий зубец Q и даже комплекс QS.
    • Зубец R, как и Q, может регистрироваться во всех стандартных и усиленных отведениях от конечностей.
    • От V1 до V4 амплитуда нарастает (при этом зубец rV1 может отсутствовать), а затем снижается в V5 и V6.
    • Зубец S может быть самой разной амплитуды, но обычно не больше 20 мм.
    • Зубец S снижается от V1 до V4, а в V5-V6 даже может отсутствовать.
    • В отведении V3 (или между V2 — V4) обычно регистрируется “переходная зона” (равенство зубцов R и S).

    анализ сегмента RS — T

    • Cегмент S-T (RS-T) является отрезком от конца комплекса QRS до начала зубца T. — — Сегмент S-T особенно внимательно анализируют при ИБС, так как он отражает недостаток кислорода (ишемию) в миокарде.
    • В норме сегмент S-T находится в отведениях от конечностей на изолинии (± 0.5 мм).
    • В отведениях V1-V3 возможно смещение сегмента S-T вверх (не более 2 мм), а в V4-V6 — вниз (не более 0.5 мм).
    • Точка перехода комплекса QRS в сегмент S-T называется точкой j (от слова junction — соединение).
    • Степень отклонения точки j от изолинии используется, например, для диагностики ишемии миокарда.
    • Зубец T отражает процесс реполяризации миокарда желудочков.
    • В большинстве отведений, где регистрируется высокий R, зубец T также положительный.
    • В норме зубец T всегда положительный в I, II, aVF, V2-V6, причем TI> TIII, а TV6 > TV1.
    • В aVR зубец T всегда отрицательный.

    анализ интервала Q — T.

    • Интервал Q-T называют электрической систолой желудочков, потому что в это время возбуждаются все отделы желудочков сердца.
    • Иногда после зубца T регистрируется небольшой зубец U, который образуется из-за кратковременной повышеной возбудимости миокарда желудочков после их реполяризации.

    6) Электрокардиографическое заключение.
    Должно включать:

    1. Источник ритма (синусовый или нет).
    2. Регулярность ритма (правильный или нет). Обычно синусовый ритм является правильным, хотя возможна дыхательная аритмия.
    3. ЧСС.
    4. Положение электрической оси сердца.
    5. Наличие 4 синдромов:
      • нарушение ритма
      • нарушение проводимости
      • гипертрофия и/или перегрузка желудочков и предсердий
      • повреждение миокарда (ишемия, дистрофия, некрозы, рубцы)

    В связи с частыми вопросами в комментариях насчет вида ЭКГ расскажу о помехах, которые могут быть на электрокардиограмме:


    Три типа помех на ЭКГ (пояснение ниже).

    Помехи на ЭКГ в лексиконе медработников называются наводкой:
    а) наводные токи: сетевая наводка в виде правильных колебаний с частотой 50 Гц, соответствующие частоте переменного электрического тока в розетке.
    б) «плавание» (дрейф) изолинии по причине плохого контакта электрода с кожей;
    в) наводка, обусловленная мышечной дрожью (видны неправильные частые колебания).

    Алгоритм анализа ЭКГ: методика определения и основные нормативы

    Ссылка на основную публикацию
    Чеснок при грудном вскармливании
    Все об употреблении чеснока при ГВ (грудном вскармливании) Появление ребенка – это долгожданное событие в жизни женщины. Матери проявляют огромную...
    Через сколько действует лидокаин спрей на коже
    Инструкция спрея Лидокаин Название этого местного анестетика хорошо знакомо всем, кто когда-либо обращался в больницу. Лидокаин спрей часто используют в...
    Через сколько дней после прогестерона начинаются месячные · GitHub
    Вопросы Вопрос: Уколы прогестерона? Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста....
    Чеснока настойка инструкция по применению показания, противопоказания, побочное действие – описание
    Чеснока настойка (Allii sativi tinctura) Владелец регистрационного удостоверения: Лекарственная форма Форма выпуска, упаковка и состав препарата Чеснока настойка Настойка 1...
    Adblock detector